
J .  Fluid Me&. (1988), vol. 186, pp.  147-162 

Printed in Great Britain 

147 

Note on Bragg scattering of water waves by 
parallel bars on the seabed 

By CHIANG C. MEI, TETSU HARA AND MAMOUN NACIRI 
Department of Civil Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA 

(Received 23 February 1986) 

A recent theory of Bragg scattering of surface waves by sinusoidal sandbars on a 
seabed is applied to three cases not examined heretofore : (1) oblique incidence on a 
strip of infinitely long bars, (2) oblique incidence on the corner of a bar field and (3) 
seabed with a mean slope. While the Bragg mechanism has been studied previously 
for sandbars present on many shorelines, it can be a basis for breakwaters where the 
soil is not strong enough to support a single massive breakwater. 

1. Introduction 
It has been widely known that excessive pumping of ground water can cause 

subsidence of the land surface. Examples of such hazards are well recorded for 
Venice, Mexico City, Bangkok, etc. Despite the fact that oil is usually pumped from 
much greater depths, prolonged pumping over a wide area has similar effects, as is 
the case for the Wilmington oil field in California. Once subsidence becomes 
intolerable, pumping must be stopped or reduced. Recently one of the world’s major 
offshore oil fields, the Ekofisk of the North Sea, has been plagued by this problem. 
Since 1979 there has been a subsidence a t  the rate of 45 cm per year, which of course 
endangers the safety of the drilling platforms against storm waves, and has 
prompted the Phillips Petroleum Co of Norway to seek remedies. According to 
MaCabe (1986), three measures have been considered : recharging the oil reservoirs 
with gas and water, raising the deck heights of the platforms, and constructing large 
breakwaters facing the prevailing waves. 

Whatever decision is made for Ekofisk, it is still worthwhile to examine the various 
measures from the engineering viewpoint so as to be better prepared for future 
occurrences elsewhere. For the Ekofisk case, the breakwater option has been studied 
theoretically and experimentally by Norksk Hydro Inc. of Bergen, Nonvave Inc. of 
Oslo and the Norwegian Hydrodynamics Laboratories of Trondheim. They propose 
a system of massive breakwaters on the windward side of the oil field. In  water of 
70 m depth, the concrete breakwaters would have a height of about 45-50 m, i.e. the 
top is submerged by the depth 20-25 m which would not interfere with navigation. 
Based on their studies, the potential effectiveness of such breakwaters against waves 
appears to be quite reasonable. 

There are several circumstances under which massive breakwaters may not be the 
most desirable remedy. Near a coast where the water depth is small, the necessary 
height of a conventional breakwater would interfere with navigation. If the top soil 
of the seabed is weak, cyclic stresses and pore pressure induced a t  the footing of a 
large breakwater may be so great as to cause soil liquefaction and failure. Lastly, 
since subsidence is caused by the weight of the seabed soil itself, the additional 
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weight of a massive structure can induced further settlement in its vicinity. While 
these factors may or may not be serious enough a t  Ekofisk, they can be relevant in 
another locale. Therefore, it  is worthwhile to consider alternative types of breakwater 
that have comparable effectiveness in protecting an area against waves, yet would 
cause less burden on the supporting seabed. 

It is known that many naturally formed sandbars of amplitudes much smaller 
than the depth of the water can produce strong reflection of water waves if the bar 
spacing is about half of the length of normally incident waves. This mechanism is 
called Bragg reSonance in crystallography and has been the subject of recent studies 
in water waves by a number of workers (Davis & Heathershaw 1984; Mei 1985; 
Kirby 1986a, b) .  With such a matching of phases, waves reflected from successive 
bars are in phase and therefore reinforce one another, resulting in strong total 
reflection. This means that many small structures can be as effective a breakwater 
as a single massive structure. Although both types of structures would require a 
comparable amount of material such as concrete, the weight of the parallel bars can 
be more evenly distributed over a much larger area of the seabed ; therefore they can 
be more suitable than a few breakwaters on a weak seabed. 

The requirement of phase matching suggests that, for a given construction of bars, 
the frequency and direction of the incident waves must both lie within narrow bands 
in order for the Bragg mechanism to be effective. It is therefore necessary to study 
more than just precise resonance. For parallel bars on a bed of constant mean depth, 
Mei (1985) and Hara & Mei (1987) have conducted both theoretical and experimental 
studies for normally incident waves that are slightly detuned from the resonant 
frequency. They have shown in particular that there exists a cutoff frequency which 
is proportional to the bar height. If the detuning frequency is less than the cutoff 
frequency, reflection increases monotonically with the increase in the number of bars. 
Otherwise, reflection may oscillate with the number of bars. Therefore the cutoff 
frequency may be regarded as the width of the frequency band within which the bars 
are effective as a breakwater. Under similar conditions, theoretical modifications for 
nonlinear effects in very shallow water have been reported by Yoon & Liu (1987). 

In  this note we consider three other effects which can be of interest to the dynamics 
of coastal processes and to the design of breakwaters : the angle of incidence, the end 
effects of a bar field, and the mean slope of the seabed. The theory will be based on 
the following asymptotic equations for the amplitudes of incident A(x ,  y, t )  and 
reflected wavetrains B(x,  y, t )  : 

where 8 is the local angle of an incident wave ray, 

(Cgl, Cg2) = Cg (cos 8, sin 8) 

are the components of the group velocity C, in the (x, y)-directions, and 

W E D  n -  
o - 2 sinh 2kh 

has the dimension of frequency. D is the amplitude of the bars, h the mean water 
depth, Elk the bar wavelength and w the water-wave frequency corresponding to k 
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and h via the usual dispersion relation. I n  terms of these the incident and reflected 
wave potentials are 

with S ,  = *rkcosOdx+kysinO-wt.  

(1.5a) 

(1.56) 

The height of the parallel bars above the mean seabed is 

6 = $D[exp(2i[k cosf?dx)+exp( - 2 i r k  cosOdx)], (1.6) 

which satisfies the Bragg condition for resonance. Due to the mild slope of the seabed, 
h, k ,  8, A and B are slowly varying functions of x compared with the wave phase. 
Detailed derivations of (1.1) and (1.2) are given in Mei (1985). These equations are 
valid when kA, kB, kD and (l/kh) (dhldx) are all small. 

2. Oblique incidence of detuned waves on a finite strip of bars 
I n  this section we consider parallel bars lying within the strip 0 < x < L,  with 

kL + 1, on a sea of constant mean depth h. The amplitudes A and B satisfy the 
following uncoupled equations on both sides of the strip : 

x < O  or > L .  

aA aA 
at g1 ax 2 

aB aB 
at gl ax 2 

-+c -+c, 

--c -+c, 
Let $2 and K be the detuning frequency and wavenumber of the incident wave ; then 
the solution must be of the form 

A = A, exp [i(Kx cosO+Ky sin d-Dt)], 1 
B = B, exp [i( -Kx cos O + K y  sin O-Ot)], J for x < 0, (2.2) 

and A = A ,  exp{i[K(x-L) cosO+Ky sinO-Ot]},1 
for x > L. (2.3) 

B = 0, J 
where SZ =C,K, with D + w ,  K + % .  (2.4) 

Within the strip of bars the equations are coupled: 

O < x < L ,  (2.5) 

aA aA aA 
- + C  -+G - = -22, cos28B, 

aB aB 
C -+C, - = -iSZ, C O S ~ ~ A ,  

aB 
at gl ax g.2 ay 

at gl ax 2 ay 
_- 

which can be combined to give the Klein-Gordon equation 

The solution must be of the form 

O < x < L .  (2.7) 
A ,  eipx + A ,  e-iPz, 
B, eipx + B, eciPX, 

(Ag) = exp [i(K sin o y - ~ t ) ]  
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From the Klein-Gordon equation, we find 
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if 

and 

if 

Thus 

52, cose 52 cos28 t 
p = - - [ ( 5 J - ( a ) ]  c, 

(above cutoff) 

p = i p ,  

(below cutoff). 

cos 2e 
go 1x1 

( 2 . 8 ~ )  

(2.8b) 

( 2 . 9 ~ )  

(2.9b) 

(2.10) 

is the cutoff frequency across which the solution changes from being monotonic to 
being oscillatory. 

Along the edges of the bar strip, continuity of pressure and normal velocity 
requires that 

and 

A ,  = A ,  + A,, 

B, = B,+B,, J 1 x<0,  

A ,  = A ,  eipL + A ,  e-iPL, 1 x > L .  
0 = B, eiPL + B, e-iPL, J 

(2.11a, b) 

(2.12a, b) 

Substituting (2.7) into ( 2 . 5 ~ )  and gathering the coefficients ofeipX and e-iPx, we get 
two more conditions : 

(2.13) 

We can now solve for all the coefficients A,,  A, ,  A,,  B,, B, and B, in terms of A,. In 
particular the transmission T and reflection R coefficients are respectively 

The results are given below for the above-cut08 case : 

and 

T = 1 =  A PC, 
A ,  pC, cos pL - if2 cos 0 sin pL 

52, sinpL cos 28 
cos 8[l)Cg cospL - i52 cos 1.9 sinpL] * 

R =  

(2.14) 

(2.15) 

(2.16) 

If the detuning is below cutoff, one simply replaces p by iP, sinpL by i sinh P L  and 

By straightforward algebra, it can be shown that 
cospL by cosh PL in the preceding formulas. 

IRl2+ITI2 = 1, (2.17) 

which is expected on the ground of energy conservation. 
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FIGURE 1 (a, b) .  For caption see next page. 
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In figure 1 we plot the magnitudes of the reflection and transmission coefficients 
as a function of 8 with 52/52, and 52,L/C, as parameters. Note that at the critical 
incidence angle 8 = the bars lose all effects on waves. For small detuning sZ/52,, 
there is only a small neighbourhood near the critical angle where reflection is small. 
As Q/Q, increases, this neighbourhood grows wider. The change from monotonic to 
oscillatory behaviour across the cutoff frequency is more clearly shown in figure 2. 

3. Scattering by the corner of a bar field 
In reality the bar field must be of finite horizontal extent. It would be very 

desirable to analyse fully the implications of Bragg resonance by parallel bars in a 
finite rectangle, by solving (1.1) and (1.2) with two space coordinates and time. As 
an alternative approach Kirby ( 1 9 8 6 ~ )  has extended the mild slope equation to 
include the additional effects of bars and reported limited results for this problem by 
numerical solution. In this section we shall give the analytical solution to a simpler 
problem : scattering by parallel bars occupying the entire first quadrant of the (x, y)- 
plane, as sketched in figure 3. For mathematical expediency we shall only consider 
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FIQURE 1. 
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Reflection and transmission intensities IRI2 and ITI2 as functions of 8 :  (a )  
( b )  0.5, (c) 1.0, and ( d )  1.5. 

52/52, = 0, 

constant h, and perfect tuning, so that the wave amplitudes are independent of t .  
Waves are incident in the north-easterly direction so that 0 < B < in. The differential 
equations are 

These are hyperbolic partial differential equations where x and y play the roles of 
space and time respectively. Let us introduce the abbreviations 

(3.3) 

and 0, cos2e ’= Cgsine (3.4) 
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FIGURE 2. Reflection intensity as a function of' detuning frequency : ( a )  0, L/ ( 'g  = 2 : 
( b )  19 = 30". 

Equations (3.1) and (3.2) may be rewritten as 

which can be combined to give the Klein-Gordon equation 
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(3.7) 

Since there are two characteristics pointing into the bar region from the x-axis, two 
initial conditions are needed along y = 0. The y-axis being time-like, only one 
boundary condition along x = 0 is needed. The appropriate conditions are 

A = A,, x = 0, y > 0, (3.8) 

A = A , ,  x > O ,  y = O ,  

B = 0 ,  x > O ,  y = 0 .  

(3.9) 

(3.10) 
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FIQURE 3. Two-dimensional scattering by the corner of a field of periodic bars. The bars are 
parallel to the y-axis and confined in the first quadrant. 

Because of (3.9) and (3.10), (3.5) also implies 

aA - = o ,  x > o ,  y = o .  
aY 

(3.11) 

Equations (3.9) and (3.11) constitute the Cauchy data on the initial line y = 0. 
By the usual technique of Fourier sine transform we get 

The first term can be easily inverted, giving 

so that 

The following derivative can be evaluated explicitly : 

sin ( q 2 a 2  + pz)i y 
- axay (q'a2 + p'); I 

or 

(Erdelyi 1953, p. 26, No. 30). Upon integration, we have for any x and y 

so that 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

In (3.17) the integration constants have been chosen so that (3.8) and (3.9) are 
satisfied. 
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Let us introduce 
Q sin26 

a c, cos6’ C, s in6’  
y ’py =oy- px - D , ~  cOs2e x=---- 

In  view of (3.16), we get from (3.18) 

Y )  - - l -SldX’~~,dYJo((Y.P--X’”) i )  if Y < X  < co, 

A(X, Y )  - - 1 - ~ d X ‘ ~ ~ , d Y ’ J 0 ( ( Y ’ 2 - - X I P ) : )  if 0 < X  < Y. 

A0 

A0 

In terms of X and Y ,  (3.5) becomes 

iB 

Carrying out the differentiation, we get 

iB(x, ’) = / ~ ~ X ’ J , ( ( Y Z - ~ Y ’ Z ) + )  if Y < x < co, 
A0 
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(3.19) 

(3 -20 a) 

(3.20 b) 

(3.21) 

( 3 . 2 2 ~ )  

iB(X’ ’) = /ox dX’J,((Y2--X12)i)+ dY’J,((Y2-X2)~) if 0 < X < Y .  

(3.22b) 
AO 

Note that both A and B are continuous across the characteristic line Y = X ,  i.e. 
y = x tan 8. In the region Y < X ,  A and B depend only on Y ,  implying that the 
presence of the boundary along X = 0 has no effect. For Y > X, A and B vary in both 
X and Y .  Their variations are calculated by numerical integration and shown in 
figures 4 and 5 .  The reflection coefficient is simply 

(3.23) 

Far from the ends of bars, Y >> 1, reflection is complete. 
We remark that there is, in principle additional local diffraction near the edge 

Y = 0, X 2 0 and the first reflected ray Y = -X; this is neglected by the present 
geometrical optics approximation. However, B vanishes along, and is continuous 
across, both lines; only its normal derivative is discontinuous there. Thus this local 
diffraction is of minor significance. If desired, however, a correction can be 
constructed analytically by applying the parabolic approximation along these 
lines. 

4. Bars on a sloping bed 
In  this section we examine the effects of bottom slope on the scattering by parallel 

bars. From our knowledge of the constant-depth case, the cutoff wavenumber, i.e. 
Q,/C, must now vary with depth. If a wavetrain enters a strip of bars a t  a subcritical 
wavenumber k + K  with K c Q,/C,, it may cross the cutoff wavenumber somewhere 
over the bars, then become supercritical before leaving the strip. This and other 
features are now examined here for a seabed with a constant mean slope. For 
simplicity we further assume normal incidence from the left and constant bar 
amplitude D .  

6 FLM I86 
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JRE 4. Variations of the reflected wave amplitude with X and Y ,  which are 
defined in (3.19). 
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JRE 4. Variations of the reflected wave amplitude with X and Y ,  which are 
defined in (3.19). 

FIGURE 5.  Variations of the transmitted wave amplitude with X and Y 

As sketched in figure 6, the origin x = 0 is chosen to coincide with the shoreward 
edge of the bar strip which has the width L. In  this section the subscript zero denotes 
quantities evaluated a t  x = 0. The shoreline is along x = L,, where all incident waves 
are absorbed by breaking. The bottom slope is ho/L,.  

The governing equations are obtained from (1.1) and (1.2) by taking 0 = 0. Outside 
the strip of bars, the right-hand sides of these equations are zero. The boundary 
conditions a t  the edges of the bar strip are 
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t 

FIQURE 6. Bars on ~l sloping beach. 

We now introduce the detuning time factor for A and B and the following 
transformation : A C' 1 e-iat, B ct = e-iat. 

Equations (1 .1)  and (1.2) then become 

(4.3) k =  

- d A  
-iQA+C - = -iQoB, (4.4) 

-iQB-C - = -iQ,d. (4.5) 

dx 
- d B  

ax 

Normalizing x by L and combining the two preceding equations, we then have 

Since complete breaking along the shoreline is assumed we have from (4.2) that 
A 

B = O  a t  x=O.  

Making use of (4.5) and (4.1) we also have 

(4.7) 

where the right-hand side is calculated from the conventional geometrical optics 
approximation of shoaling waves over a smooth bottom. 

Equation (4.6) is of the Sturm-Liouville form 

--[ d p(x) g]+q(x)B = 0, - 1  < x < 0, 
dx 

with the boundary conditions 
A 

B = 0 ,  x = O ,  

Here 

(4.9) 

dB - 
-+rB = b, 
dx 

x = -1. 

(4.12a, b )  . d  i2 p(x) = - 

r = i[--1 Q0L a , b = i[Td] QO L 
c, 0 0  -1 -1 

(4.10) 

(4.11) 

(4.12c, d) 

6-2 
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FIGURE 7. Local Qo L/C, normalized by its value at x = 0 vs. local depth for various 
incident wavenumbers. 
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FIGURE 8. Local detuning 
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various incident wavenumbers. 
a t  x = 0 vs. local depth for 

We may replace the boundary-value problem defined by (4.9)-(4.11) by requiring 
that the quadratic functional 

(4.13) 

be stationary for small variations in with (4.10) as the essential and (4.11) as the 
natural boundary conditions. The method of finite elements is then used to solve for 
8 a t  discrete points in the region - 1 < x < 0. 

Using x = 0 as the reference station, the numerical solution depends on the 
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FIGURE 9. Reflection coefficient R vs. LIL,. 

dimensionless parameters kh, 52, L/C,, 52/52, and L/L,. They represent respectively 
the local depth relative to the resonant wavelength, the width of the bar strip 
relative to the cutoff wavelength, the degree of detuning of the incident waves, and 
the location of the shoreline. In applications, we first may prescribe w ,  52, h,, D,  L 
and L,, then all these parameters can be inferred. In particular the bed slope is 
defined by h,/L,. The local values of a, L/C, and (52/QO)-l decrease rapidly with 
h/h, as shown in figures 7 and 8 where D is kept constant. For perfect tuning, 
the reflection coefficient at the incident edge of the strip (R = IB/AJ-,) is shown in 
figure 9 as a function of LIL, for several values of 

For fixed (52, L,/Cg), reflection increases with L/L,  but does not always approach 
unity. This is because as L/L ,  increases the left edge retreats to deeper water, while 
the transmission edge stays in the same depth. The bars furthest offshore then 
become too deep to be felt by the waves. 

We now show the effect of detuning on the local amplitude of the incident and 
reflected waves. For a narrow strip (see figure lOa), the variation in x is monotonic, 
because the strip width is too small for spatial oscillations due to supercritical 
detuning to take effect. For a wide strip (see figure l ob ) ,  the oscillatory variation 
intensifies as (52/52,), increases. Local detuning becomes supercritical when 8/9, 
exceeds unity. Take, for example, the case where (52/sZ,), = 0.5 and (kh), = 1. This 
threshold occurs a t  the depth h/h, = 1.45, as can be seen from figure 8. This threshold 
is at x = -0.45 in figure lob .  Lastly, figure 11 shows the effect of detuning and strip 
width on the reflection at  the left edge. As detuning or strip width increases the 
tendency for oscillation increases, as anticipated earlier. 

The case of arbitrarily varying mean depth and oblique incidence can be examined 
in the same way. 
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FIGURE 10. Transmitted and reflected wave amplitudes IA/A-,I (solid lines) and IB/A-,l (dashed 
lines) us. x / L  for D = constant, (kh), = 1 and L/L ,  = 1. (a) (Q,L/C,), = 1, ( b )  (Q,L/C,), = 5. For 
comparison, IA/A_,I in the absence of bars is indicated by the dot-dash line. 
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FIGURE 11. Reflection coefficient R vus. (Q,L/C,),, for (kh) ,  = 1 and L / L ,  = 1 

5. Bars of other cross-sections 
Neither natural sandbars are, nor man-made breakwaters likely to be, shaped as a 

sinusoidal curve. For economical construction breakwaters should be semicylinders 
of a simple cross-section such as a rectangle or a semicircle. It is therefore useful to 
assess the influence of the cross-sectional shape on the effectiveness of reflection. In  
general the profile of a seabed with bars should be a periodic function of x for many 
periods. Let the period be xlol and the incident wave be oblique and slightly detuned 
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from Bragg resonance, i.e. the wavenumber component in the x-direction is slightly 
different from a. We expand the bed profile as a Fourier series, 

with D, = 02,. By following the analysis of Mei (1985) i t  is easily shown, for 
monochromatic waves, that only the first harmonic 

+(Dl eZiaz + D-, e-ziax) 

will resonate reflected waves. Therefore it is only necessary to expand the shape 
function into a Fourier series and replace D in the previous analysis by D,. Clearly 
if the incident wave has a finite spectral width, other harmonics in (5.1) may also 
contribute. 

As two examples, we take a series of rectangular and half-elliptical cross-sections. 
The half-width is a and the height is b in each case: 

(5.2) 

1x1 7t 
b, i f - < l < -  

a 2aa 

a 2aa 

(rectangles), 
0, i f l < - < -  14 7t 

6(x) = ( 5 . 3 )  

Mathematically speaking, these profiles have abrupt changes of slope and arc not 
compatible with the perturbation theory. Therefore the results are valuable primarily 
as a guide for more accurate analysis. With this reservation, we give the Fourier 
coefficients 

(5.5) 

D, = bJl(2aa) (half ellipses). (5.6) 

26 D, = - sin (2aa) (rectangles), 
7t 

For small aa, D, is approximately (4/7t) aab for the rectangle and aab for the ellipse. 
As aa increases, D, reaches a maximum and then decreases. When adjacent cylinders 
touch each other, a approaches n/2a.  At this limit D, vanishes for the rectangles ; 
there is no more reflection since the bed becomes flat again. For touching ellipses 
D, = 0.285b;  there is of course still some reflection since the bed is not flat. 

We acknowledge the financial support of the Ocean Engineering Program, US 
Office of Naval Research and the Fluid Mechanics and Hydraulics Program, US 
National Science Foundation. Part of this study was initiated when C.C.M. was a 
guest a t  Norwave, Inc. Oslo, Norway. The warm and stimulating hospitality of 
Dr Even Mehlum and his colleagues there is recorded with pleasure. 



162 C. C. Mei, T .  Hara and M .  Naciri 

R E F E R E N C E S  

DAVIES, A. G. & HEATHERSHAW, A. D. 1984 Surface-wave propagation over sinusoidally varying 

ERDELYI, A. 1954 Tables of Integral Transforms. MacGraw Hill. 
HARA, T. & MEI, C. C. 1987 Bragg scattering of surface waves by periodic bars: theory and 

KIRBY, J. T. 1986a A general wave equation for waves over rippled beds. J .  Fluid Mech. 162, 

KIRBY, J.  T. 1986b On the gradual reflection of weakly nonlinear Stokes waves in regions with 
varying topography. J .  Fluid Mech. 162, 187-209. 

MCCABE, C. 1986 How Phillips is dealing with subsidence a t  Ekofisk. Ocean Industry February, 
30-34. 

MEI, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J .  Fluid Mech. 
152, 315-335. 

YOON, S. B. & LIU, P. L. F. 1987 Resonant reflection of shallow-water waves due to corrugated 

topography. J .  Fluid Mech. 144, 419-443. 

experiment. J .  Fluid Mech. 178, 59-76. 

17 1-1 86. 

boundaries. J .  Fluid Mech. 180, 451469. 


